Regiochemistry in aryl radical cyclisations (5-exo versus 6-endo) of N -vinylic 2-iodobenzamides

Hiroyuki Ishibashi, *a Kohei Ohata, ${ }^{a}$ Michiyo Niihara, ${ }^{b}$ Tatsunori Sato ${ }^{b}$ and Masazumi Ikeda ${ }^{b}$
a Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920-0934, Japan
${ }^{b}$ Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8414, Japan

Received (in Cambridge, UK) 1st November 1999, Accepted 3rd December 1999
$\mathrm{Bu}_{3} \mathrm{SnH}$-mediated aryl radical cyclisations of a range of N-vinylic 2-iodobenzamides $\mathbf{1 0}$ were examined. The enamides 10a-d gave exclusively the 5-exo cyclisation products 11a-d, whereas the enamides 10e,f having a phenyl substituent on the vinylic carbon atom α to the nitrogen atom gave predominantly the 6 -endo cyclisation products 14 and 18 , respectively. The experiments on the effect of concentration of $\mathrm{Bu}_{3} \mathrm{SnH}$ or temperature on the products distribution showed that the formation of the 6 -endo cyclisation products $\mathbf{1 4}$ and $\mathbf{1 8}$ was a result of a 5 -exo cyclisation of the aryl radicals formed from 10e,f followed by neophyl rearrangement of the intermediate radicals.

Aryl radical cyclisation has recently emerged as a valuable tool for organic synthesis. ${ }^{1}$ Many examples have been reported for the $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated aryl radical cyclisation onto an enamide double bond. ${ }^{2,3}$ The literature indicates that enamides having an alkenic bond at the 5 -position relative to the aryl radical centre usually cyclise in a 6 -endo manner exclusively or predominantly to give six-membered lactams. ${ }^{2}$ For example, the enamide 1 gave the 6 -endo cyclisation product 2 as the major product (38% yield) accompanied by the 5 -exo cyclisation product 3 (27% yield). ${ }^{2 a}$ Quite recently, we found, however, that the enamides 4 underwent cyclisation in a 5-exo manner exclusively to give the isoindolone derivatives 5. ${ }^{4}$

Scheme 1 Reagents and conditions: i, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, toluene, reflux; ii, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{ACN}$, toluene, reflux.

At first glance, the difference between the structural features of the radical precursors $\mathbf{1}$ and $\mathbf{4}$ is that the enamide $\mathbf{1}$ has an aryl substituent on the vinylic carbon atom α to the nitrogen atom, whereas the enamides $\mathbf{4}$ have no substituent on the corresponding carbon atom. An additional feature of the enamides 4 is that they have two phenylthio groups at the terminus of their N-vinylic bond. Accordingly, one possible explanation for the
predominant formation of $\mathbf{2}$ from $\mathbf{1}$ and $\mathbf{5}$ from $\mathbf{4}$ may be that the intermediate radicals I and III are much more stable than are the alternate intermediate radicals II and IV, respectively. The radical centre of \mathbf{I} is flanked by the radical-stabilising aryl substituent and the nitrogen atom, and the radical III by two phenylthio groups. However, it is difficult to rule out the following possibility for the predominant formation of $\mathbf{2}$ and $\mathbf{5}$. The aryl radicals formed from $\mathbf{1}$ and $\mathbf{4}$ may attack on the vinylic carbon atom so as to avoid the steric repulsion between the radical centre and the aryl or phenylthio substituents, to lead to the formation of I and III, respectively. Alternately, the formation of I may involve an initial 5-exo cyclisation of the radical formed from 1 followed by neophyl rearrangement ${ }^{5}$ of the intermediate radical. Therefore, it forced us to examine in detail the cyclisations of a range of enamides $\mathbf{1 0}$ in order to see the exact reason for the predominant formation of $\mathbf{2}$ and $\mathbf{5}$. Herein, we describe the results of our work in this area and show an example of the consecutive 5-exo cyclisation and neophyl rearrangement leading to the 6 -endo products.

IV

Results and discussion

The requisite radical precursors 10a-f were prepared as follows. Acylation of N -methyl-2-(phenylthio)ethylamine with 2-iodobenzoyl chloride $\mathbf{6}$ gave the amide 7 , which was oxidised with MCPBA followed by heating of the resulting sulfoxide in boiling xylene to give $\mathbf{1 0 a}$ as a result of the thermal syn elimination of benzenesulfenic acid. On the other hand, condensation of methylamine with phenylacetaldehyde, diphenylacetaldehyde,

6

8a; $R^{1}=P h, R^{2}=R^{3}=H$
8b; $R^{1}=R^{2}=P h, R^{3}=H$
8c; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}_{2} \mathrm{R}^{3}=\mathrm{Ph}$
8d; $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=H, R^{3}=\mathrm{Ph}$

9

10a; $R^{1}=R^{2}=R^{3}=H$
10b; $R^{1}=P h, R^{2}=R^{3}=H$
10c; $R^{1}=R^{2}=P h, R^{3}=H$
10d; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}^{3}=\mathrm{H}$ 10f; $R^{1}=M e, R^{2}=H_{1} R^{3}=P h$
acetophenone or propiophenone gave the imines $\mathbf{8 a}, \mathbf{8 b}, \mathbf{8 c}$ and 8d, which were treated with acid chloride 6 to afford 10b, 10c, 10e and 10f, respectively. Similar treatment of the enamine 9 , prepared from N-methylamine and diethyl ethoxymethylenemalonate, with 6 afforded 10 d . The ${ }^{1} \mathrm{H}$ NMR spectra of $10 \mathrm{a}-\mathrm{e}$ showed the compounds 10a,b to be mixtures of two rotamers of the amides, and the compounds 10c-e to exist as single rotamers (see Experimental section). The geometry of the phenyl group ($\mathrm{R}^{1}=\mathrm{Ph}$) of $\mathbf{1 0 b}$ on the vinylic bond was proved to be E-configuration by the coupling constant (14.5 Hz) between the two alkenic protons. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 f}$ also showed it to be a mixture of two components, but it is unknown whether the mixture consists of two rotamers or of two stereoisomers involving the methyl substituent $\left(R^{1}=M e\right)$.

We initiated our investigation by examining the cyclisation of the most simple enamide 10a. When a mixture of $\mathrm{Bu}_{3} \mathrm{SnH}(1.5$ equiv.) and azobiscyclohexanecarbonitrile (ACN) (0.2 equiv.) in toluene was added slowly to a boiling solution of 10a in toluene over a period of 1.5 h and the mixture was further heated for 1 h , the 5 -exo cyclisation product 11a was obtained in 60% yield, along with the reduction product $\mathbf{1 2 a}$ (25% yield).

Scheme 2 Reagents and conditions: i, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{ACN}$, toluene, reflux.
The structure of 11a was readily confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy which exhibited the signal due to the methyl group on the $\mathrm{C}-3$ position at $\delta 1.47$ as a doublet $(J 6.5 \mathrm{~Hz})$. This result clearly indicates that the general guideline for the aryl radical cyclisation, "a 5 -exo cyclisation is preferred over a 6 -endo cyclisation", is also applicable to the cyclisation onto the enamide double bond. The exclusive formation of the 5-exo cyclisation product $\mathbf{5}$ from $\mathbf{4}$ was not, therefore, assumed to be a result that the sterically more demanding two phenylthio groups prevented the 6 -endo cyclisation.

Similarly, the enamides 10b, 10c and 10d, having the substitu-
ents at the terminus of the N-vinylic bond, afforded exclusively the 5 -exo cyclisation products 11b, 11c and 11d in 55,43 , and 65% yields, respectively, along with the corresponding reduction products 12b (35% yield), 12c (16% yield) and 12d (13% yield).

Our attention was next turned to the enamides 10e and 10f having a phenyl substituent on the vinylic carbon atom α to the nitrogen atom. When the compound $\mathbf{1 0 e}$ was treated slowly with $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of ACN in boiling toluene, a mixture of the five-membered lactam 13 and the six-membered lactam 14 was obtained in 55% combined yield, together with the unsaturated six-membered lactam 15 and the reduction product 16 in 16 and 13% yields, respectively (Scheme 3). The

Scheme 3 Reagents and conditions: $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{ACN}$ or $\mathrm{Et}_{3} \mathrm{~B}$, toluene, reflux or room temp. or $(\mathrm{TMS})_{3} \mathrm{SiH}, \mathrm{ACN}$, toluene, reflux.
structures of $\mathbf{1 3}$ and $\mathbf{1 4}$ were confirmed by the spectroscopic evidence. Thus, the IR spectrum of the mixture of $\mathbf{1 3}$ and $\mathbf{1 4}$ showed the bands at 1680 and $1640 \mathrm{~cm}^{-1}$, which were clearly indicative of five- and six-membered lactams, respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture exhibited a singlet due to the C-methyl protons of $\mathbf{1 3}$ at $\delta 1.88$ and a double doublet ($J 6.9$ and 3.0 Hz) due to $3-\mathrm{H}$ of $\mathbf{1 4}$ at $\delta 4.76$. The integrated intensity of the peak heights of their signals indicated that the sixmembered lactam 14 was the major product. The ratio of 13 to 14 was estimated to be $c a .1: 5$. Recrystallisation of the mixture from hexane-AcOEt gave 14 in pure form, mp 113.5$114^{\circ} \mathrm{C}$. On the other hand, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 5}$ showed the signal due to the alkenic $4-\mathrm{H}$ at $\delta 6.46$ as a singlet and the IR spectrum showed a band at $1650 \mathrm{~cm}^{-1}$ (a sixmembered lactam).

Formation of $\mathbf{1 3}$ and $\mathbf{1 4}$ can be best explained in terms of an attack of $\mathrm{Bu}_{3} \mathrm{SnH}$ on the intermediate radicals VIa and VIIIa, respectively (Scheme 4). The unsaturated lactam $\mathbf{1 5}$ might arise by an oxidation of the radical VIIIa. ${ }^{6}$ One can imagine that the radical VIIIa might be formed directly by cyclisation of the aryl radical Va due probably to the higher stability of VIIIa over VIa. However, it has frequently been observed that a consecutive 5-exo cyclisation and neophyl rearrangement produces the 6 -endo cyclisation products. We then examined the possibility of the neophyl rearrangement of the intermediate radical VIa to VIIIa via VIIa by carrying out the cyclisations of 10e under various conditions. The results are summarised in Table 1.

First, $\mathrm{Bu}_{3} \mathrm{SnH}$ was added rapidly (within 5 min) to a boiling solution of 10e in toluene (entry 2 in Table 1). Under these conditions, the formation of the 5 -exo cyclisation product 13 increased as compared with entry 1 (slow addition of $\left.\mathrm{Bu}_{3} \mathrm{SnH}\right)$. Thus, the ratios of $\mathbf{1 3}:(\mathbf{1 4 + 1 5})$ for entries 1 and 2 were estimated to be $1: 6.9$ and $1: 3.4$, respectively. A similar result was obtained by carrying out the reaction at room temperature in a high concentration of $\mathrm{Bu}_{3} \mathrm{SnH}$ using triethylborane as a radical initiator, ${ }^{7}$ in which the ratio of the products $\mathbf{1 3}:(\mathbf{1 4}+\mathbf{1 5})$ was $1: 3.0$ (entry 3). These results suggest that the 5-exo cyclisation of Va giving VIa is a kinetically favoured process. It is assumed that at high concentration of $\mathrm{Bu}_{3} \mathrm{SnH}$ (entries 2 and 3), the radical VIa is rapidly trapped by $\mathrm{Bu}_{3} \mathrm{SnH}$

Table 1 Radical cyclisation of $\mathbf{1 0 e}{ }^{a}$

Entry	$\mathrm{R}_{3} \mathrm{MH}^{\text {b }}$	Temp. ($T /{ }^{\circ} \mathrm{C}$)	Time ${ }^{\text {c }}$	Yield of products (\%) ${ }^{\text {d }}$				
				13	14	15	16	Ratio of $\mathbf{1 3}:(\mathbf{1 4}+\mathbf{1 5})$
1	$\mathrm{Bu}_{3} \mathrm{SnH}$	110	4.5 h	9	46	16	13	1:6.9
2	$\mathrm{Bu}_{3} \mathrm{SnH}$	110	$5 \mathrm{~min}^{\text {e }}$	18	55	6	13	1:3.4
3	$\mathrm{Bu}_{3} \mathrm{SnH}$	20	f	20	25	34	0	1:3.0
4	(TMS) ${ }_{3} \mathrm{SiH}$	110	4.5 h	8	11	47	0	1:7.3

${ }^{a} \mathrm{ACN}$ was used as a radical initiator except for entry $3\left(\mathrm{Et}_{3} \mathrm{~B}\right) .{ }^{b}$ For mol equiv. of $\mathrm{R}_{3} \mathrm{MH}$, see Experimental section. ${ }^{c}$ Rate of addition of $\mathrm{R}_{3} \mathrm{MH}$. ${ }^{d}$ Yields of $\mathbf{1 3}$ and $\mathbf{1 4}$ were estimated by the ratios of the mixtures of them, and isolated yields are indicated for $\mathbf{1 5}$ and $\mathbf{1 6}$. ${ }^{e}$ After addition of $\mathrm{Bu}_{3} \mathrm{SnH}_{\text {, }}$ the mixture was further heated for $30 \mathrm{~min} .{ }^{f} \mathrm{Et}_{3} \mathrm{~B}$ was added to a mixture of enamide $\mathbf{1 0 e}$ and $\mathrm{Bu}_{3} \mathrm{SnH}$, and the mixture was stirred for 20 h .

Table 2 Radical cyclisation of $\mathbf{1 0 f}^{a}$

Entry	$\mathrm{R}_{3} \mathrm{MH}^{\text {b }}$	Temp. ($T /{ }^{\circ} \mathrm{C}$)	Time ${ }^{\text {c }}$	Yield of products (\%) ${ }^{\text {d }}$				
				17	18a,b	19	20	Ratio of $\mathbf{1 7}:(\mathbf{1 8 a , b}+\mathbf{1 9})$
1	$\mathrm{Bu}_{3} \mathrm{SnH}$	110	4 h	8	40^{e}	14	21	1:6.7
2	$\mathrm{Bu}_{3} \mathrm{SnH}$	110	$10 \min ^{f}$	13	44^{e}	8	30	1:4
3	$\mathrm{Bu}_{3} \mathrm{SnH}$	20	g	54	0	0	28	17 only
4	$(\mathrm{TMS})_{3} \mathrm{SiH}$	110	4.5 h	9	15^{e}	48	5	1:7

${ }^{a} \mathrm{ACN}$ was used as a radical initiator except for entry $3\left(\mathrm{Et}_{3} \mathrm{~B}\right) .{ }^{b}$ For mol equiv. of $\mathrm{R}_{3} \mathrm{MH}$, see Experimental section. ${ }^{c}$ Rate of addition of $\mathrm{R}_{3} \mathrm{MH}$. ${ }^{d}$ Yields of $\mathbf{1 7}$ and 18a,b were estimated by the ratios of their mixtures, and isolated yields are indicated for 19 and $\mathbf{2 0}$. ${ }^{e}$ The ratios of $\mathbf{1 8 a}$ and $\mathbf{1 8 b}$ are 1.7:1 for entry $1,1.9: 1$ for entry 2 , and $2.8: 1$ for entry $4 .{ }^{f}$ After addition of $\mathrm{Bu}_{3} \mathrm{SnH}$, the mixture was further heated for 30 min . ${ }^{g} \mathrm{Et}_{3} \mathrm{~B}$ was added to a solution of enamide $\mathbf{1 0 f}$ and $\mathrm{Bu}_{3} \mathrm{SnH}$, and the mixture was stirred for 14 h .

Scheme 4
to result in an increase in the amount of the five-membered lactam 13. On the other hand, at low concentrations of hydride (entry 1), a subsequent neophyl rearrangement of the radical VIa to VIIIa competes successfully with reduction by $\mathrm{Bu}_{3} \mathrm{SnH}$ to result in an increase in the amount of the six-membered lactams 14 and 15. When tris(trimethylsilyl)silane [(TMS) $)_{3} \mathrm{SiH}$] was used as a hydride in place of the $\mathrm{Bu}_{3} \mathrm{SnH}$ used in entry 1 , the ratio of $\mathbf{1 3}:(\mathbf{1 4 + 1 5})(1: 7.3)$ was essentially the same as that ($1: 6.9$) for entry 1 , whereas an increase in the amount of the oxidation product 15 was observed (entry 4). (TMS) 3 SiH is a sterically more demanding hydride than $\mathrm{Bu}_{3} \mathrm{SnH}$, so that the radical VIIIa is resistant to an attack by $(\mathrm{TMS})_{3} \mathrm{SiH}$, resulting in an increase in the amount of the oxidation product 15.

The results obtained with the enamide $\mathbf{1 0 f}$ strongly supported the assumption of the neophyl rearrangement of the radicals VI to VIII. Thus, treatment of the enamide $\mathbf{1 0 f}$ with a high
concentration of $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of triethylborane at room temperature gave only the 5-exo cyclisation product 17 in 54% yield along with $\mathbf{1 0 f}$ (28% yield) (entry 3 in Table 2). By contrast, when the enamide $\mathbf{1 0 f}$ was treated with a low concentration of $\mathrm{Bu}_{3} \mathrm{SnH}$ (Scheme 5), a mixture of the 5 -exo cyclisation product 17 and the 6 -endo cyclisation products, 3,4-cis and -trans tetrahydroisoquinolinones 18a,b, was obtained in 48% combined yield, together with the oxidation product 19 (16% yield) (entry 1 in Table 2). The structures of $\mathbf{1 8 a}, \mathbf{b}$ were confirmed by a comparison of the coupling constants between $3-\mathrm{H}$ and $4-\mathrm{H}$ with the reported values of the related compounds. ${ }^{8}$ Thus, the $c i s$-isomer 18a had a relatively large coupling constant (6.3 Hz) and the trans-isomer had a small one (1.3 $\mathrm{Hz})$. The ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of $\mathbf{1 7}$ and 18a,b showed the ratio of $\mathbf{1 7 : 1 8 a}, \mathrm{b}$ to be $1: 5$, and hence the ratio of the 5 -exo cyclisation product and the 6 -endo cyclisation products, $\mathbf{1 7}:(\mathbf{1 8 a}, \mathbf{b}+\mathbf{1 9})$, was estimated to be 1:6.7.

Scheme 5 Reagents and conditions: $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{ACN}$ or $\mathrm{Et}_{3} \mathrm{~B}$, toluene, reflux or room temp. or $(\mathrm{TMS})_{3} \mathrm{SiH}, \mathrm{ACN}$, toluene, reflux.

The exclusive formation of $\mathbf{1 7}$ from $\mathbf{1 0 f}$ for entry 3 can be rationalised as follows. The radical Vb formed from $\mathbf{1 0 f}$ cyclises in a kinetically favoured 5-exo manner to give VIb (Scheme 4). A subsequent neophyl rearrangement of VIb may be retarded for stereoelectronic reasons due probably to the presence of the methyl substituent $(\mathrm{R}=\mathrm{Me})$, and hence the radical VIb is
rapidly attacked by a high concentration of $\mathrm{Bu}_{3} \mathrm{SnH}$ to give 17 . On the other hand, at high temperature and at low concentration of $\mathrm{Bu}_{3} \mathrm{SnH}$ (entry 1) the radical VIb undergoes the neophyl rearrangement to give VIIIb via VIIb, thereby leading to the 6 -endo cyclisation products $\mathbf{1 8 a}, \mathbf{b}$ and 19 as the major products. When $\mathrm{Bu}_{3} \mathrm{SnH}$ was added rapidly (within 10 min) to a boiling solution of $\mathbf{1 0 f}$ in toluene, the formation of the 5-exo cyclisation product 17 increased (entry 2 in Table 2) as compared with entry 1 . As in the case of $\mathbf{1 0 e}$, when $(T M S)_{3} \mathrm{SiH}$ was used in place of the $\mathrm{Bu}_{3} \mathrm{SnH}$ used in entry 1 , an increase in the amount of the oxidation product 19 was observed (entry 4).

Finally, in order to see the possibility of a consecutive 5-exo cyclisation and neophyl rearrangement for the formation of the 6 -endo cyclisation product 2 from 1, we examined the reaction of the enamide 21 having an iodine atom on the aryl group instead of the use of the bromide 1.

When the enamide 21 was treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ under similar conditions to those described above for entry 3 in Table 2 (triethylborane, toluene, at room temperature), the unsaturated six-membered lactam 22 was obtained in 20% yield, along with a mixture of $\mathbf{3}$ and a considerable amount of an unidentified product (Scheme 6). Thus, it seems reasonable to assume that the direct endo cyclisation might be operating in the reactions of the enamide 21 . The 5-exo cyclisation leading to $\mathbf{3}$ might be retarded for stereoelectronic reasons caused by the formation of the spiro ring of $\mathbf{3}$.

Scheme 6 Reagents and conditions: i, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{Et}_{3} \mathrm{~B}$, toluene, room temp.

In summary, we revealed that the aryl radical cyclisations of the enamides 10a-f usually occurred in a 5-exo manner, regardless of the presence of an aryl substituent on the vinylic carbon atom α to the nitrogen atom, and that at low concentration of hydride a consecutive 5-exo cyclisation and neophyl rearrangement took place to lead to the apparent formation of the 6-endo cyclisation products. The present results strongly suggest that the difference in the stability of the cyclised intermediate radicals is not always sufficient to explain the product distribution of the radical cyclisations. Exceptions may be the cases where severe steric repulsion exists in an alternative mode of cyclisation.

Experimental

Mps were measured on a Yanagimoto MP-S2 micro melting point apparatus and are uncorrected. IR spectra were recorded on a JASCO-IR-A-100 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR (60, 270 and 300 MHz) spectra were measured on a JEOL JNM-PMX 60, a JEOL JNM-EX 270 or a Varian XL-300 spectrometer for solutions in $\mathrm{CDCl}_{3} . \delta$ Values quoted are relative to tetramethylsilane and J values are given in Hz . Exact mass determinations (EI and FAB mass spectra) were obtained on a JEOL-SX 102A instrument. Column chromatography was performed on silica gel $60 \mathrm{PF}_{254}$ (Nacalai Tesque) under pressure.

2-Iodo- N-methyl- N-[2-(phenylthio)ethyl]benzamide 7

A solution of 2-iodobenzoyl chloride $6(1.0 \mathrm{~g}, 3.75 \mathrm{mmol})$ in toluene ($10 \mathrm{~cm}^{3}$) was added to an ice-cooled solution of N-methyl-2-(phenylthio)ethylamine ${ }^{9}$ ($645 \mathrm{mg}, 3.86 \mathrm{mmol}$), triethylamine ($581 \mathrm{mg}, 5.74 \mathrm{mmol}$) and 4-(dimethylamino)pyridine ($84 \mathrm{mg}, 0.75 \mathrm{mmol}$) in toluene $\left(30 \mathrm{~cm}^{3}\right)$, and the
mixture was stirred at room temperature for 1 h . Water was added and the organic phase was washed successively with saturated aq. $\mathrm{NaHCO}_{3}, 10 \%$ aq. HCl , and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (2:1)] to give $7(1.17 \mathrm{~g}, 79 \%)$ as an oil (Found: C, 49.1; H, 4.1; N, 3.4. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{INOS}$ requires C , 48.4; $\mathrm{H}, 4.1 ; \mathrm{N}, 3.5 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1630 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.88$ and 3.13 (total 3 H , both s , NMe), 2.9-4.0 ($4 \mathrm{H}, \mathrm{m}$) and 7.07.85 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

N-Ethenyl-2-iodo- N-methylbenzamide 10a

To a solution of $7(2.33 \mathrm{~g}, 5.87 \mathrm{mmol})$ in dichloromethane (25 cm^{3}) was added dropwise a solution of MCPBA ($1.11 \mathrm{~g}, 6.43$ $\mathrm{mmol})$ in dichloromethane $\left(25 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ during 1.5 h , and the mixture was stirred at the same temperature for 30 min . The reaction mixture was washed with saturated aq. NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The resulting crude sulfoxide was dissolved in xylene $\left(50 \mathrm{~cm}^{3}\right)$ containing $\mathrm{NaHCO}_{3}(1.0 \mathrm{~g}, 11.9$ mmol), and the mixture was heated at reflux for 20 h . The precipitates were filtered off and the filtrate was concentrated. The crude material was chromatographed on silica gel [hexaneAcOEt (7:1)] to give $\mathbf{1 0 a}(1.29 \mathrm{~g}, 77 \%)$ as an oil (Found: M^{+}, 286.9798. $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{INO}$ requires $M, 286.9807$); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ 1675 and $1620 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 2.94(3 \mathrm{H} \times 1 / 4$, s, NMe), 3.28 (3 $\mathrm{H} \times 3 / 4, \mathrm{~s}, \mathrm{NMe}), 4.28(3 / 4 \mathrm{H}$, dd, $J 9.0$ and 1.3 , one of $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 4.55\left(3 / 4 \mathrm{H}\right.$, dd, $J 15.3$ and 1.3 , one of $\left.\mathrm{CH}=\mathrm{CH}_{2}\right)$, $4.629\left(1 / 4 \mathrm{H}, \mathrm{dd}, J 9.0\right.$ and 1.1 , one of $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 4.632(1 / 4 \mathrm{H}$, dd, $J 16.1$ and 1.1, one of $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.42(3 / 4 \mathrm{H}$, dd, $J 15.3$ and 9.0, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 7.12(1 \mathrm{H}, \mathrm{td}, J 7.6$ and $1.7, \mathrm{ArH}), 7.23(3 / 4 \mathrm{H}$, dd, $J 7.6$ and 1.7, ArH), $7.24(1 / 4 \mathrm{H}, \mathrm{dd}, J 7.6$ and $1.7, \mathrm{ArH})$, $7.42(1 \mathrm{H}, \mathrm{td}, J 7.5$ and 1.1, ArH), $7.69(1 / 4 \mathrm{H}, \mathrm{dd}, J 16.1$ and $\left.9.0, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $7.85(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.1, \mathrm{ArH})$.

(E)-2-Iodo- N-methyl- N-(2-phenylethenyl)benzamide 10b

To a solution of excess methylamine in diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ were added phenylacetaldehyde ($c a .50 \%$ in diethyl phthalate) ($1 \mathrm{~g}, 4.16 \mathrm{mmol}$ for phenylacetaldehyde) and $\mathrm{MgSO}_{4}(10 \mathrm{~g})$, and the mixture was stirred at room temperature for $10 \mathrm{~h} . \mathrm{MgSO}_{4}$ was filtered off, the filtrate was concentrated, and the residue containing the imine $8 \mathbf{a}$ was dissolved in dichloromethane (10 cm^{3}). To this were added successively triethylamine ($870 \mathrm{mg}, 8.6$ mmol), 4-(dimethylamino)pyridine (DMAP) ($100 \mathrm{mg}, 0.82$ $\mathrm{mmol})$ and a solution of $6(1.11 \mathrm{~g}, 4.17 \mathrm{mmol})$ in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 5 h . Water was added and the reaction mixture was extracted with chloroform. The extract was washed successively with 5% aq. HCl , saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (5:1)] to give 10b ($362 \mathrm{mg}, 24 \%$), mp 113.5-114.5 ${ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 53.0; H, 3.9; $\mathrm{N}, 3.7 . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{INO}$ requires $\mathrm{C}, 52.9 ; \mathrm{H}, 3.9 ; \mathrm{N}, 3.9 \%$); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1670$ and $1635 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 3.08$ and 3.41 (total 3 H , both s, NMe), 6.06 and 6.12 (total 1 H , both d, $J 14.5, \mathrm{C} H=\mathrm{Ph}$), 6.88 and 8.24 (total 1 H , both d, J 14.5, $\mathrm{NCH}=), 7.0-7.9(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

2-Iodo- N-methyl- N-(2,2-diphenylethenyl)benzamide 10c

A solution of diphenylacetaldehyde ($981 \mathrm{mg}, 5 \mathrm{mmol}$) in toluene $\left(5 \mathrm{~cm}^{3}\right)$ was added to methylamine $\left(5 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ and the mixture was heated in a sealed tube at $100^{\circ} \mathrm{C}$ for 2 h . The reaction vessel was cooled to $-78^{\circ} \mathrm{C}$, the stopper was removed, and the reaction mixture was transferred carefully to a roundbottomed flask. After removal of any excess methylamine and solvent in vacuo, the residue containing the imine $\mathbf{8 b}$ was dissolved in benzene $\left(20 \mathrm{~cm}^{3}\right)$. Triethylamine $(1.01 \mathrm{~g}, 10 \mathrm{mmol})$, DMAP ($61 \mathrm{mg}, 0.5 \mathrm{mmol}$) and a solution of acid chloride $6(1.47 \mathrm{~g}, 5.5 \mathrm{mmol})$ in benzene $\left(10 \mathrm{~cm}^{3}\right)$ were added to this solution at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temper-
ature for 1 h . The reaction mixture was washed successively with 5% aq. HCl , saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (8:1)] to give $\mathbf{1 0 c}(1.60 \mathrm{~g}, 72 \%)$, mp $130.5-131{ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, $59.8 ; \mathrm{H}, 4.1 ; \mathrm{N}$, 3.1. $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{INO}$ requires $\left.\mathrm{C}, 60.15 ; \mathrm{H}, 4.1 ; \mathrm{N}, 3.2 \%\right) ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) /$ $\mathrm{cm}^{-1} 1660 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 3.01(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 6.47(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C})$ and 6.7-7.8 ($14 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Diethyl [N-(2-iodobenzoy)- N-methylaminomethylene]malonate 10d

A solution of diethyl ethoxymethylenemalonate ($500 \mathrm{mg}, 2.31$ mmol) in toluene ($5 \mathrm{~cm}^{3}$) was added to anhydrous methylamine $\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ and the mixture was heated in a sealed tube at $100^{\circ} \mathrm{C}$ for 2 h . A similar work-up to that described above for the preparation of 8a gave diethyl methylaminomethylenemalonate 9 (465 mg , quant.), which was used immediately in the next step without further purification; $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.28$ ($3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CMe}$), 1.31 ($3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CMe}$), $3.13(3 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NMe}), 4.15\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{OCH}_{2}\right), 4.19\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{OCH}_{2}\right)$, 7.7-8.2 $(1 \mathrm{H}, \mathrm{br})$ and 8.5-9.5 $(1 \mathrm{H}, \mathrm{br})$.

A solution of $9(465 \mathrm{mg}, 2.31 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise to a suspension of sodium hydride [60% dispersion in mineral oil ($360 \mathrm{mg}, 9.0 \mathrm{mmol}$), washed several times with hexane] in THF $\left(10 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 30 min . To this was added a solution of acid chloride $\mathbf{6}(1.76 \mathrm{~g}, 6.6 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 30 min . The solvent was evaporated off and the residue was dissolved in diethyl ether $\left(30 \mathrm{~cm}^{3}\right)$. The organic phase was washed with brine and 10% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography on silica gel [hexane-AcOEt $(8: 1)$] to give $\mathbf{1 0 d}$ as an oil (1.01 g, quant.) (Found: C, $44.8 ; \mathrm{H}, 4.4$; N, 3.1. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{INO}_{5}$ requires C, 44.6; H, 4.2; N, 3.3\%); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1720,1695$ and $1615 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.19(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CMe}), 1.34(3 \mathrm{H}, \mathrm{t}$, $J 7.5, \mathrm{CMe}), 3.26(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 4.11\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{OCH}_{2}\right), 4.28$ $\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{OCH}_{2}\right)$ and 6.9-7.9 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and $\mathrm{CH}=\mathrm{C}$).

2-Iodo- N-methyl- N-(1-phenylethenyl)benzamide 10e

Following the procedure described above for the preparation of 10c, acetophenone ($1.00 \mathrm{~g}, 8.32 \mathrm{mmol}$) was treated with anhydrous methylamine ($5 \mathrm{~cm}^{3}$), and the resulting crude imine 8c was treated with acid chloride $\mathbf{6}(2.44 \mathrm{~g}, 9.15 \mathrm{mmol})$ in the presence of triethylamine ($926 \mathrm{mg}, 9.15 \mathrm{mmol}$) and DMAP ($101 \mathrm{mg}, 0.83 \mathrm{mmol}$) to give $\mathbf{1 0 e}(2.28 \mathrm{~g}, 75 \%), \mathrm{mp} 109-110^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 52.95; H, 3.95; N, 3.7. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{INO}$ requires C, $\left.52.9 ; \mathrm{H}, 3.9 ; \mathrm{N}, 3.9 \%\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ 1655 ; $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 3.30(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 5.25\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right)$ and 6.5-7.8 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

2-Iodo- N-methyl- N-(1-phenylprop-1-enyl)benzamide $10 f$

Following the procedure described above for the preparation of $\mathbf{1 0 c}$, propiophenone ($1 \mathrm{~g}, 7.45 \mathrm{mmol}$) was treated with anhydrous methylamine ($3 \mathrm{~cm}^{3}$), and the resulting crude imine 8d was treated with acid chloride $\mathbf{6}(2 \mathrm{~g}, 7.51 \mathrm{mmol})$ in the presence of triethylamine $(1.01 \mathrm{~g}, 10 \mathrm{mmol})$ and DMAP (190 $\mathrm{mg}, 1.56 \mathrm{mmol}$) to give $\mathbf{1 0 f}\left(815 \mathrm{mg}, 29 \%\right.$), mp $70-72^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 54.0; H, 4.4; N, 3.5. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{INO}$ requires C, 54.1; H, 4.3; N, 3.7\%); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1630$; $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.62(3 \mathrm{H} \times 5 / 6, \mathrm{~d}, J 7.3, \mathrm{CMe}), 1.89(3 \mathrm{H} \times 1 / 6, \mathrm{~d}$, $J 7.3, \mathrm{CMe}), 2.85(3 \mathrm{H} \times 1 / 6, \mathrm{~s}, \mathrm{NMe}), 3.37(3 \mathrm{H} \times 5 / 6, \mathrm{~s}, \mathrm{NMe})$, $5.91(5 / 6 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{MeC} H=), 6.10(1 / 6 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{MeC} H=)$, $6.8-7.5(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.70(5 / 6 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH})$ and $7.84(1 / 6$ H, d, J 7.9, ArH).

Radical cyclisation of 10a

General procedure. To a boiling solution of $\mathbf{1 0 a}(263 \mathrm{mg}, 0.92$ mmol) in toluene ($37 \mathrm{~cm}^{3}$) was added dropwise a solution of
$\mathrm{Bu}_{3} \mathrm{SnH}(400 \mathrm{mg}, 1.37 \mathrm{mmol})$ and $\mathrm{ACN}(45 \mathrm{mg}, 0.18 \mathrm{mmol})$ in toluene ($37 \mathrm{~cm}^{3}$) via a syringe during 1.5 h , and the mixture was further refluxed for 1 h . After evaporation of the solvent, diethyl ether ($20 \mathrm{~cm}^{3}$) and 8% aq. KF ($20 \mathrm{~cm}^{3}$) were added to the residue, and the whole was vigorously stirred at room temperature for 30 min . The organic phase was separated and the aqueous phase was further extracted with diethyl ether $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated, and the residue was chromatographed on silica gel [hexane-AcOEt (8:1)]. The first fraction gave N-ethenyl-N-methylbenzamide 12a ($37 \mathrm{mg}, 25 \%$) as an oil (Found: $\mathrm{M}^{+}, 161.0833 . \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}$ requires $M, 161.0841$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1665$ and $1620 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 3.24(3 \mathrm{H}, \mathrm{br} \mathrm{s}$, NMe), 4.20-4.34 (1 H , br, one of $\mathrm{CH}=\mathrm{CH}_{2}$), $4.51(1 \mathrm{H}$, d, $J 15.5$, one of $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.68-6.92\left(1 \mathrm{H}, \mathrm{br}, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and 7.39-7.50 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$). The second fraction gave 2,3-dihydro-2,3-dimethyl-1H-isoindol-1-one 11a ($88 \mathrm{mg}, 60 \%$) as an oil (Found: $\left.\mathrm{M}^{+}, 161.0837\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1700 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.47$ ($3 \mathrm{H}, \mathrm{d}, J 6.5,3-\mathrm{Me}$), $3.11(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 4.40(1 \mathrm{H}, \mathrm{q}, J 6.5$, $3-\mathrm{H})$ and $7.1-7.9(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Radical cyclisation of 10b. Following the general procedure, 10b ($433 \mathrm{mg}, 1.19 \mathrm{mmol}$) was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(520 \mathrm{mg}$, 1.79 mmol) and ACN ($58 \mathrm{mg}, 0.24 \mathrm{mmol}$). After work-up, the crude material was chromatographed on silica gel [hexaneAcOEt (7:1)]. The first fraction gave (E)-N-methyl-N-(2phenylethenyl) benzamide $\mathbf{1 2 b}(100 \mathrm{mg}, 35 \%)$, mp $112.5-113^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 80.9; H, 6.4; N, 5.9. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}$ requires C, $\left.81.0 ; \mathrm{H}, 6.4 ; \mathrm{N}, 5.9 \%\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ 1670 and 1635 ; $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 3.31(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$, $5.98(1 \mathrm{H}, \mathrm{d}$, $J 15,=\mathrm{CHPh}), 6.9-7.7(11 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and $\mathrm{NCH}=)$. The second fraction gave 3-benzyl-2,3-dihydro-2-methyl-1 H-isoindol-1-one 11b ($154 \mathrm{mg}, 55 \%$) (Found: $\mathrm{M}^{+}, 237.1144 . \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}$ requires $M, 237.1154) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1700 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 2.82(1 \mathrm{H}, \mathrm{dd}$, $J 14$ and 7.5, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.07(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.28(1 \mathrm{H}, \mathrm{dd}$, $J 14$ and 5.5 , one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.58(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $5.5,3-\mathrm{H})$ and 6.8-7.8 $(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Radical cyclisation of $\mathbf{1 0 c}$. Following the general procedure, compound 10c ($250 \mathrm{mg}, 0.57 \mathrm{mmol}$) was treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ ($248 \mathrm{mg}, 0.85 \mathrm{mmol}$) and $\mathrm{ACN}(27 \mathrm{mg}, 0.11 \mathrm{mmol}$). After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (10:1)]. The first fraction gave N-methyl- N -(2,2-diphenylethenyl) benzamide 12c ($28 \mathrm{mg}, 16 \%$) as an oil (Found: $\mathrm{M}^{+}, 313.1461 . \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}$ requires $M, 313.1467$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1655 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 2.95(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 6.62(1$ $\mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C})$ and $6.8-7.5(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. The second fraction gave 2,3-dihydro-2-methyl-3-diphenylmethyl-1 H-isoindol-1-one 11c ($77 \mathrm{mg}, 43 \%$) $\mathrm{mp} 135.5-136.5^{\circ} \mathrm{C}$ (from hexane-AcOEt) [Found: $(\mathrm{M}+\mathrm{H})^{+}, \quad 314.1553 . \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}$ requires $M \mathrm{H}^{+}$, 314.1545]; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1700 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 2.89(3 \mathrm{H}, \mathrm{s}$, $\mathrm{NMe}), 4.59\left(1 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{Ph}_{2} \mathrm{C} H\right), 5.19(1 \mathrm{H}, \mathrm{d}, J 6.9,3-\mathrm{H})$, 6.90-6.96 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.13-7.55 ($11 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.76 $(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{ArH})$.

Radical cyclisation of 10d. Following the general procedure, 10d ($800 \mathrm{mg}, 1.85 \mathrm{mmol}$) was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(810 \mathrm{mg}$, 2.78 mmol) and ACN ($90 \mathrm{mg}, 0.37 \mathrm{mmol}$). After work-up, the crude material was chromatographed on silica gel [hexaneAcOEt (5:1)]. The first fraction gave diethyl (N-benzoyl- N methyl) aminomethylenemalonate $\mathbf{1 2 d}(76 \mathrm{mg}, 13 \%)$ as an oil (Found: C, 63.15; H, 6.5; N, 4.4. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires $\mathrm{C}, 62.9 ; \mathrm{H}$, $6.3 ; \mathrm{N}, 4.6 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1720,1695$ and $1615 ; \delta_{\mathrm{H}}(60$ $\mathrm{MHz}) 1.19(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CMe}), 1.34(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CMe}), 3.30(3 \mathrm{H}$, s, NMe), $4.14\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 4.34\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 7.28$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C})$ and $7.47(5 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$. The second fraction gave diethyl 2-(2,3-dihydro-2-methyl-1-oxo-1 H-isoindol-3-yl)malonate 11d ($367 \mathrm{mg}, 65 \%$) as an oil (Found: C, 62.6; H, 6.4; N, 4.6); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1705 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.02(3 \mathrm{H}, \mathrm{t}, J 7.1$, CMe), 1.21 ($3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CMe}$), $3.16(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 4.00(2 \mathrm{H}$,
$\mathrm{qd}, J 7.1$ and 1.8 , one of $\left.\mathrm{OCH}_{2}\right), 4.07(1 \mathrm{H}, \mathrm{d}, J 3.5,3-\mathrm{H}), 4.22$ $\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2}\right), 5.14\left(1 \mathrm{H}, \mathrm{d}, J 3.5,3^{\prime}-\mathrm{H}\right), 7.42-7.60(3 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH})$ and $7.81(1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{ArH})$.

Radical cyclisation of 10e. For entry 1 in Table 1. To a boiling solution of 10e ($150 \mathrm{mg}, 0.41 \mathrm{mmol}$) in toluene ($50 \mathrm{~cm}^{3}$) was added dropwise a solution of $\mathrm{Bu}_{3} \mathrm{SnH}(205 \mathrm{mg}, 0.71 \mathrm{mmol})$ and ACN ($22 \mathrm{mg}, 0.09 \mathrm{mmol}$) in toluene ($50 \mathrm{~cm}^{3}$) via a syringe during 4.5 h . After evaporation of the solvent, diethyl ether (80 $\left.\mathrm{cm}^{3}\right)$ and 8% aq. $\mathrm{KF}\left(60 \mathrm{~cm}^{3}\right)$ were added to the residue, and the whole was vigorously stirred at room temperature for 5 h . The organic phase was separated and the aqueous phase was further extracted with diethyl ether $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated, and the residue was chromatographed on silica gel [hexane-AcOEt (4:1)]. The first fraction gave N-methyl- N-(1 -phenylethenyl)benzamide 16 ($13 \mathrm{mg}, 13 \%$) as an oil (Found: M^{+}, 237.1149. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}$ requires $M, 237.1154) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1630 ; \delta_{\mathrm{H}}(270 \mathrm{MHz})$ $3.24(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 4.85\left(1 \mathrm{H}, \mathrm{s}\right.$, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.35(1 \mathrm{H}, \mathrm{s}$, one of $\mathrm{C}=\mathrm{CH}_{2}$) and 7.18-7.51 ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$). The second fraction gave 1,2-dihydro-2-methyl-3-phenylisoquinolin-1-one $\mathbf{1 5}$ $(16 \mathrm{mg}, 16 \%)$ as an oil (Found: M^{+}, 235.0994. $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}$ requires $M, 235.0997)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1650$ and $1620 ; \delta_{\mathrm{H}}(270$ MHz) 3.43 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), $6.46(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.26-7.67(8 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $8.46(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH})$. The third fraction gave a mixture of 2,3-dihydro-2,3-dimethyl-3-phenyl-1 H-isoindol-1-one $13\left[v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1680 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.88(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me})\right.$, $2.86(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$, 6.98-7.39 ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.74-7.82 $(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})]$ and 1,2,3,4-tetrahydro-2-methyl-3-phenyliso-quinolin-1-one $\mathbf{1 4}(54 \mathrm{mg})$ in a ratio of 1:5.1. Recrystallisation of this mixture from hexane-AcOEt gave pure 14, $\mathrm{mp} 113.5-$ $114^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 80.9; H, 6.4; N, 5.8 . $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}$ requires C, $\left.81.0 ; \mathrm{H}, 6.4 ; \mathrm{N}, 5.9 \%\right)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $1640 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 3.03\left(1 \mathrm{H}, \mathrm{dd}, J 15.8\right.$ and 3.0 , one of $\left.4-\mathrm{H}_{2}\right)$, $3.10(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.66\left(1 \mathrm{H}, \mathrm{dd}, J 15.8\right.$ and 6.9 , one of $4-\mathrm{H}_{2}$), $4.76(1 \mathrm{H}, \mathrm{dd}, J 6.9$ and $3.0,3-\mathrm{H}), 6.98-7.39(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 8.11-8.18 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

For entry 2 in Table 1. To a boiling solution of $\mathbf{1 0 e}(150 \mathrm{mg}$, 0.41 mmol) in toluene ($45 \mathrm{~cm}^{3}$) was added dropwise a solution of $\mathrm{Bu}_{3} \mathrm{SnH}(151 \mathrm{mg}, 0.52 \mathrm{mmol})$ and $\mathrm{ACN}(21 \mathrm{mg}, 0.09 \mathrm{mmol})$ in toluene ($20 \mathrm{~cm}^{3}$) via a syringe during 5 min , and the mixture was further heated at reflux for 30 min . After work-up, the crude material was chromatographed on silica gel [hexaneAcOEt (4:1)]. The first fraction gave 16 ($13 \mathrm{mg}, 13 \%$). The second fraction gave $\mathbf{1 5}(6 \mathrm{mg}, 6 \%)$. The third fraction gave a mixture of $\mathbf{1 3}$ and $\mathbf{1 4}(71 \mathrm{mg})$ in a ratio of $1: 3$.

For entry 3 in Table 1. To a stirred solution of 10e (200 mg , 0.55 mmol) and $\mathrm{Bu}_{3} \mathrm{SnH}(195 \mathrm{mg}, 0.67 \mathrm{mmol})$ in toluene (55 cm^{3}) was added triethylborane ($1.06 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexane; $2.1 \mathrm{~cm}^{3}, 2.22 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 20 h . After evaporation of the solvent, a solution of the residue in diethyl ether $\left(50 \mathrm{~cm}^{3}\right)$ was treated with 8% aq. $\mathrm{KF}\left(50 \mathrm{~cm}^{3}\right)$ in the usual manner. To the separated ethereal phase was added $\mathrm{Al}_{2} \mathrm{O}_{3}(10 \mathrm{~g})$ and the whole was vigorously stirred at room temperature for 1 h . The inorganic materials were filtered off, the solvent was evaporated off and the residue was chromatographed on silica gel [hexane-AcOEt (4:1)]. The first fraction gave 15 ($44 \mathrm{mg}, 34 \%$). The second fraction gave a mixture of $\mathbf{1 3}$ and $\mathbf{1 4}(59 \mathrm{mg})$ in a ratio of $1: 1.2$.

For entry 4 in Table 1. To a boiling solution of $\mathbf{1 0 e}(150 \mathrm{mg}$, 0.41 mmol) in toluene ($4 \mathrm{~cm}^{3}$) was added dropwise a solution of (TMS) $)_{3} \mathrm{SiH}(201 \mathrm{mg}, 0.81 \mathrm{mmol})$ and $\mathrm{ACN}(22 \mathrm{mg}, 0.09 \mathrm{mmol})$ in toluene ($40 \mathrm{~cm}^{3}$) via a syringe during 4.5 h . After work-up, the crude material was chromatographed on silica gel [hexaneAcOEt ($4: 1$)]. The first fraction gave $15(45 \mathrm{mg}, 47 \%)$. The second fraction gave a mixture of $\mathbf{1 3}$ and $\mathbf{1 4}(19 \mathrm{mg})$ in a ratio of $4: 5$.

Radical cyclisation of $\mathbf{1 0 f}$. For entry 1 in Table 2. According to a procedure similar to that described above for entry 1 for the
cyclisation of $\mathbf{1 0 e}, \mathbf{1 0 f}(100 \mathrm{mg}, 0.265 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(100 \mathrm{mg}, 0.34 \mathrm{mmol})$ and $\mathrm{ACN}(13 \mathrm{mg}, 0.05 \mathrm{mmol})$. After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (4:1)]. The first fraction gave N -methyl-N-(1-phenylprop-1-enyl) benzamide 20 ($14 \mathrm{mg}, 21 \%$), mp 138-139 ${ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 80.9; H, 6.9; N, 5.4. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}$ requires $\left.\mathrm{C}, 81.2 ; \mathrm{H}, 6.8 ; \mathrm{N}, 5.6 \%\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1630 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.55(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{CMe}), 3.21(3 \mathrm{H}, \mathrm{s}$, NMe), $5.86(1 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{MeCH}=)$ and $7.13-7.50(10 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$. The second fraction gave 1,2-dihydro-2,4-dimethyl-3-phenylisoquinolin-1-one 19 ($10 \mathrm{mg}, 14 \%$), mp $101-102^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 81.8; H, 6.2; N, 5.6. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}$ requires C, 81.90; H, 6.1; N, 5.6\%) (Found: M^{+}, 249.1155. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}$ requires $\left.M, 249.1154\right)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1} \quad 1640\right.$; $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.02(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}), 3.25(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 7.22-7.75$ $(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.54(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH})$. The third fraction gave a mixture of 3-ethyl-2,3-dihydro-2-methyl-3-phenyl-1 H-isoindol-1-one $\mathbf{1 7}$ and cis- and trans-1,2,3,4-tetrahydro-2,4-dimethyl-3-phenylisoquinolin-1-ones 18a,b (total 32 mg , total 48%) in a ratio of $1: 3.1: 1.9$. This mixture was further chromatographed on silica gel [hexane-AcOEt (8:1)] to give pure 18b, 17 and 18a in order of elution. Compound 18b: mp 89.5$90.5^{\circ} \mathrm{C}$ (Found: C, 81.2; H, 6.8; N, 5.5); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1640$; $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.48(3 \mathrm{H}, \mathrm{d}, J 7.3,4-\mathrm{Me}), 3.07-3.20(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 3.13$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 4.48 ($1 \mathrm{H}, \mathrm{d}, J$ 1.3, 3-H), 6.95-7.40 $(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 8.13-8.17 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$). Compound 17: mp $138-138.5^{\circ} \mathrm{C}$ (Found: C, 81.35 ; H, 6.9; N, 5.5) (Found: M^{+}, 251.1305. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}$ requires $M, 251.1310$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $1680 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 0.49(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CMe}), 2.39(1 \mathrm{H}, \mathrm{dq}$, $J 14.2$ and 7.3 , one of $\left.\mathrm{CH}_{2}\right), 2.57(1 \mathrm{H}, \mathrm{dq}, J 14.2$ and 7.3 , one of CH_{2}), $2.81(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 7.10-7.50(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.84-$ $7.92(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. Compound 18a: mp 131-132 ${ }^{\circ} \mathrm{C}$ (Found: C, 81.3; H, 6.9; N, 5.5) (Found: $\mathrm{M}^{+}, 251.1307$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $1640 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.19(3 \mathrm{H}, \mathrm{d}, J 6.9,4-\mathrm{Me}), 3.07(3 \mathrm{H}, \mathrm{s}$, NMe), 3.79 (1 H , quintet, $J 6.9,4-\mathrm{H}$), 4.46 ($1 \mathrm{H}, \mathrm{d}, J 6.3,3-\mathrm{H}$), $6.88(2 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}), 7.06-7.47(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 8.18 ($1 \mathrm{H}, \mathrm{dd}, J 7.3$ and 1.7, ArH).
For entry 2 in Table 2. According to a procedure similar to that described above for entry 2 for the cyclisation of 10e, 10f $(100 \mathrm{mg}, 0.265 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(100 \mathrm{mg}, 0.34$ mmol) and $\mathrm{ACN}(13 \mathrm{mg}, 0.05 \mathrm{mmol})$. After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (4:1)]. The first fraction gave $20(20 \mathrm{mg}, 30 \%)$. The second fraction gave $19(5 \mathrm{mg}, 8 \%)$. The third fraction gave a mixture $\mathbf{1 7}$ and 18a,b (total 38 mg , total 57%) in a ratio of 1:2.2:1.2.
For entry 3 in Table 2. According to a procedure similar to that described above for entry 3 for the cyclisation of 10e, 10f $(100 \mathrm{mg}, 0.265 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(100 \mathrm{mg}, 0.34$ mmol) and triethylborane ($1.06 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane; $1.5 \mathrm{~cm}^{3}, 1.6 \mathrm{mmol}$). After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (4:1)]. The first fraction gave $20(19 \mathrm{mg}, 28 \%)$. The second fraction gave 17 (36 $\mathrm{mg}, 54 \%)$.
For entry 4 in Table 2. According to a procedure similar to that described above for entry 4 for the cyclisation of 10e, 10f $(100 \mathrm{mg}, 0.265 \mathrm{mmol})$ was treated with $(\mathrm{TMS})_{3} \mathrm{SiH}(105 \mathrm{mg}$, 0.42 mmol) and ACN ($19 \mathrm{mg}, 0.08 \mathrm{mmol}$). After work-up, the crude material was chromatographed on silica gel [hexane$\operatorname{AcOEt}(4: 1)]$. The first fraction gave $20(3 \mathrm{mg}, 5 \%)$. The second fraction gave 19 ($31 \mathrm{mg}, 48 \%$). The third fraction gave a mixture 17 and 18a,b (total 16 mg , total 24%) in a ratio of $2.3: 2.8: 1$.

N-Benzyl- N-(3,4-dihydro-1-naphthyl)-2-iodobenzamide 21

Using the procedure reported by Grigg, ${ }^{10}$ compound 21 was prepared from 1 -tetralone, benzylamine and acid chloride $\mathbf{6}, \mathrm{mp}$ $113.5-114.5^{\circ} \mathrm{C}$ (from hexane-AcOEt), lit.,$^{10} \mathrm{mp} 115-116^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1635 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.72-1.90(1 \mathrm{H}, \mathrm{m})$, $1.90-2.09(1 \mathrm{H}, \mathrm{m}), 2.25-2.42(1 \mathrm{H}, \mathrm{m}), 2.42-2.60(1 \mathrm{H}, \mathrm{m}), 4.05$ $\left(1 \mathrm{H}, \mathrm{d}, J 14.2\right.$, one of $\left.\mathrm{NCH}_{2}\right), 5.69(1 \mathrm{H}, \mathrm{dd}, J 5.3$ and 4.3,
$\mathrm{C}=\mathrm{CH}), 5.80\left(1 \mathrm{H}, \mathrm{d}, J 14.2\right.$, one of $\left.\mathrm{NCH}_{2}\right), 6.79-7.50(12 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $7.72(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH})$.

Radical cyclisation of 21

To a stirred solution of $21(100 \mathrm{mg}, 0.21 \mathrm{mmol})$ and $\mathrm{Bu}_{3} \mathrm{SnH}$ ($77 \mathrm{mg}, 0.26 \mathrm{mmol}$) in toluene ($20 \mathrm{~cm}^{3}$) was added triethylborane ($1.06 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane; $1.2 \mathrm{~cm}^{3}, 1.27 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 4 h . After work-up as described above for entry 3 for $\mathbf{1 0 e}$, the crude material was chromatographed on silica gel [hexane-AcOEt (4:1)]. The first fraction gave 5 -benzyl-11,12-dihydrobenzo[c]-phenanthridin- $6(5 H)$-one $22^{11}(14 \mathrm{mg}, 20 \%)$, mp $130-131^{\circ} \mathrm{C}$ (from diethyl ether), lit., ${ }^{11} \mathrm{mp} 129-131^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $1640 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.84\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 5.57\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right)$, $7.0-7.6(12 \mathrm{H}, \mathrm{m})$ and $8.48(1 \mathrm{H}, \mathrm{d}, J 7.9,4-\mathrm{H})$. The second fraction gave a mixture of $\mathbf{3}^{2 a}$ and a considerable amount of an unidentified product (9 mg).

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.

References

1 B. Giese, Radicals in Organic Synthesis: Formation of CarbonCarbon Bonds, Pergamon, New York, 1986; D. P. Curran, Synthesis, 1988, 417 and 489; C. P. Jasperse, D. P. Curran and T. L. Fevig, Chem. Rev., 1991, 91, 1237. See also refs. 2 and 3.
2 (a) S. Takano, M. Suzuki, S. Kijima and K. Ogasawara, Tetrahedron Lett., 1990, 31, 2315; (b) S. Takano, M. Suzuki and K. Ogasawara,

Heterocycles, 1990, 31, 1151; (c) S. A. Glover and J. Warkentin, J. Org. Chem., 1993, 58, 2115; (d) A. G. Schultz, P. R. Guzzo and D. M. Nowak, J. Org. Chem., 1995, 60, 8044; (e) P. Pigeon and B. Decroix, Tetrahedron Lett., 1996, 37, 7707; (f) A. G. Schultz, M. A. Holoboski and M. S. Smyth, J. Am. Chem. Soc., 1996, 118, 6210; (g) J. H. Rigby and M. E. Mateo, Tetrahedron, 1996, 52, 10569; (h) L. Ripa and A. Hallberg, J. Org. Chem., 1998, 63, 84; (i) J. Cassayre and S. Z. Zard, Synlett, 1999, 501.

3 H. Ishibashi, H. Kawanami, H. Nakagawa and M. Ikeda, J. Chem. Soc., Perkin Trans. 1, 1997, 2291; J. H. Rigby and M. N. Qabar, J. Org. Chem., 1993, 65, 4473; J. Fidalgo, L. Castedo and D. Domínguez, Tetrahedron Lett., 1993, 34, 7317; G. Rodríguez, M. M. Cid, C. Saá, L. Castedo and D. Domínguez, J. Org. Chem., 1996, 61, 2780.
4 H. Ishibashi, H. Kawanami and M. Ikeda, J. Chem. Soc., Perkin Trans. 1, 1997, 817
5 K. A. Parker, D. M. Spero and K. C. Inman, Tetrahedron Lett., 1986, 27, 2833; A. N. Abeywickrema, A. L. J. Beckwith and S. Gerba, J. Org. Chem., 1987, 52, 4072.

6 The oxidation under the $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated radical cyclisation conditions has frequently been observed. See: J. C. Moody and C. L. Norton, J. Chem. Soc., Perkin Trans. 1, 1997, 2639; A. M. Rosa, A. M. Lobo, P. S. Branco, S. Prabhakar and M. Sá-da-Costa, Tetrahedron, 1997, 53, 299; F. Aldabbagh, W. R. Bowman and E. Mann, Tetrahedron Lett., 1997, 38, 7937.

7 K. Matsumoto, K. Miura, K. Oshima and K. Utimoto, Bull. Chem. Soc. Jpn., 1995, 68, 625 and references cited therein.
8 M. Cushman and W. C. Wong, J. Org. Chem., 1984, 49, 1278.
9 H. L. Wehrmeister, J. Org. Chem., 1963, 28, 2589.
10 R. Grigg, V. Sridharan, P. Stevenson and S. Sukirthalingam, Tetrahedron, 1989, 45, 3557.
11 I. Ninomiya, T. Naito, T. Kiguchi and T. Mori, J. Chem. Soc., Perkin Trans. 1, 1973, 1696.

